It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Transformer models have been developed in molecular science with excellent performance in applications including quantitative structure-activity relationship (QSAR) and virtual screening (VS). Compared with other types of models, however, they are large and need voluminous data for training, which results in a high hardware requirement to abridge time for both training and inference processes. In this work, cross-layer parameter sharing (CLPS), and knowledge distillation (KD) are used to reduce the sizes of transformers in molecular science. Both methods not only have competitive QSAR predictive performance as compared to the original BERT model, but also are more parameter efficient. Furthermore, by integrating CLPS and KD into a two-state chemical network, we introduce a new deep lite chemical transformer model, DeLiCaTe. DeLiCaTe accomplishes 4× faster rate for training and inference, due to a 10- and 3-times reduction of the number of parameters and layers, respectively. Meanwhile, the integrated model achieves comparable performance in QSAR and VS, because of capturing general-domain (basic structure) and task-specific knowledge (specific property prediction). Moreover, we anticipate that the model compression strategy provides a pathway to the creation of effective generative transformer models for organic drugs and material design.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer