It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We report the design, operation, and performance of a high-resolution, low-latency, bunch-by-bunch feedback system for nanobeam stabilization. The system employs novel, ultralow quality-factor cavity beam position monitors (BPMs), a two-stage analog signal down-mixing system, and a digital signal processing and feedback board incorporating a field-programmable gate array. The field-programmable gate array firmware allows for the real-time integration of up to fifteen samples of the BPM waveforms within a measured latency of 232 ns. We show that this real-time sample integration improves significantly the beam position resolution and, consequently, the feedback performance. The best demonstrated real-time beam position resolution was 19 nm, which, as far as we are aware, is the best real-time resolution achieved in any operating BPM system. The feedback was operated in two complementary modes to stabilize the vertical position of the ultrasmall beam produced at the focal point of the ATF2 beamline at KEK. In single-BPM feedback mode, beam stabilization to50±5nmwas demonstrated. In two-BPM feedback mode, beam stabilization to41±4nmwas achieved.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer