Full text

Turn on search term navigation

© 2022 Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

The use of immunotherapeutic vaccination in prostate cancer is a promising approach that likely requires the induction of functional, cytotoxic T cells . The experimental approach described here uses a well-studied adenovirus-poxvirus heterologous prime-boost regimen, in which the vectors encode a combination of prostate cancer antigens, with the booster dose delivered by either the intravenous or intramuscular (IM) route. This prime-boost regimen was investigated for antigen-specific CD8+ T cell induction.

Methods

The coding sequences for four antigens expressed in prostate cancer, 5T4, PSA, PAP, and STEAP1, were inserted into replication-incompetent chimpanzee adenovirus Oxford 1 (ChAdOx1) and into replication-deficient modified vaccinia Ankara (MVA). In four strains of mice, ChAdOx1 prime was delivered intramuscularly, with an MVA boost delivered by either IM or intravenous routes. Immune responses were measured in splenocytes using ELISpot, multiparameter flow cytometry, and a targeted in vivo killing assay.

Results

The prime-boost regimen was highly immunogenic, with intravenous administration of the boost resulting in a sixfold increase in the magnitude of antigen-specific T cells induced and increased in vivo killing relative to the intramuscular boosting route. Prostate-specific antigen (PSA)-specific responses were dominant in all mouse strains studied (C57BL/6, BALBc, CD-1 and HLA-A2 transgenic).

Conclusion

This quadrivalent immunotherapeutic approach using four antigens expressed in prostate cancer induced high magnitude, functional CD8+ T cells in murine models. The data suggest that comparing the intravenous versus intramuscular boosting routes is worthy of investigation in humans.

Details

Title
Intravenous administration of viral vectors expressing prostate cancer antigens enhances the magnitude and functionality of CD8+ T cell responses
Author
Vardeu, Antonella 1 ; Davis, Charlotte 1 ; McDonald, Ian 1 ; Stahlberg, Guilherme 1 ; Thapa, Barsha 1 ; Piotrowska, Kinga 1 ; Marshall, Margaret A 1 ; Evans, Thomas 2   VIAFID ORCID Logo  ; Wheeler, Vicky 1 ; Sebastian, Sarah 1 ; Anderson, Katie 1   VIAFID ORCID Logo 

 Vaccitech Limited, Oxford, UK 
 Chief Scientific Officer, Vaccitech Limited, Oxford, UK 
First page
e005398
Section
Oncolytic and local immunotherapy
Publication year
2022
Publication date
Nov 2022
Publisher
BMJ Publishing Group LTD
e-ISSN
20511426
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2731463352
Copyright
© 2022 Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.