It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
An experimental study of the afterglow mode was performed with a third generation electron cyclotron resonance ion source, SECRAL-II (Superconducting ECR ion source with Advanced design in Lanzhou No. II), under double frequency heating. The experimental results show that intense pulsed beams of highly charged ions (e.g.,266eμAofXe12934+and169eμAofXe12938+) could be produced at high frequency (24+18GHz) and high power (∼8kW), even compared with the beam intensity records of SECRAL-II obtained in continuous wave (cw) mode at higher microwave frequency (28+18GHz) and higher power (∼10kW), the gain factor is also up to∼3. Meanwhile, it is found that the afterglow decay time in our study is much longer than that obtained with the second generation ECR ion sources typically operating at 10–18 GHz, and the corresponding peak duration is greater than 2 ms. This study provides a viable solution for heavy ion synchrotron accelerator complex such as High Intensity Heavy Ion Accelerator Facility project that requires intense pulsed beams of highly charged ions with long peak duration.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer