It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper shows how to bootstrap hypothesis tests in the context of the Parks’s (1967) Feasible Generalized Least Squares estimator. It then demonstrates that the bootstrap outperforms FGLS(Parks)’s top competitor. The FGLS(Parks) estimator has been a workhorse for the analysis of panel data and seemingly unrelated regression equation systems because it allows the incorporation of cross-sectional correlation together with heteroskedasticity and serial correlation. Unfortunately, the associated, asymptotic standard error estimates are biased downward, often severely. To address this problem, Beck and Katz (1995) developed an approach that uses the Prais-Winsten estimator together with “panel corrected standard errors” (PCSE). While PCSE produces standard error estimates that are less biased than FGLS(Parks), it forces the user to sacrifice efficiency for accuracy in hypothesis testing. The PCSE approach has been, and continues to be, widely used. This paper develops an alternative: a nonparametric bootstrapping procedure to be used in conjunction with the FGLS(Parks) estimator. We demonstrate its effectiveness using an experimental approach that creates artificial panel datasets modelled after actual panel datasets. Our approach provides a superior alternative to existing estimation options by allowing researchers to retain the efficiency of the FGLS(Parks) estimator while producing more accurate hypothesis test results than the PCSE.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Economics and Finance, University of Canterbury, New Zealand
2 Bonneville Power Administration, Portland, Oregon, USA
3 Department of Economics, University of Washington, Washington, USA





