Abstract

This paper shows how to bootstrap hypothesis tests in the context of the Parks’s (1967) Feasible Generalized Least Squares estimator. It then demonstrates that the bootstrap outperforms FGLS(Parks)’s top competitor. The FGLS(Parks) estimator has been a workhorse for the analysis of panel data and seemingly unrelated regression equation systems because it allows the incorporation of cross-sectional correlation together with heteroskedasticity and serial correlation. Unfortunately, the associated, asymptotic standard error estimates are biased downward, often severely. To address this problem, Beck and Katz (1995) developed an approach that uses the Prais-Winsten estimator together with “panel corrected standard errors” (PCSE). While PCSE produces standard error estimates that are less biased than FGLS(Parks), it forces the user to sacrifice efficiency for accuracy in hypothesis testing. The PCSE approach has been, and continues to be, widely used. This paper develops an alternative: a nonparametric bootstrapping procedure to be used in conjunction with the FGLS(Parks) estimator. We demonstrate its effectiveness using an experimental approach that creates artificial panel datasets modelled after actual panel datasets. Our approach provides a superior alternative to existing estimation options by allowing researchers to retain the efficiency of the FGLS(Parks) estimator while producing more accurate hypothesis test results than the PCSE.

Details

Title
Bootstrap methods for inference in the Parks model
Author
Moundigbaye, Mantobaye 1 ; Messemer, Clarisse 2 ; Parks, Richard W 3 ; Reed, W Robert 1 

 Department of Economics and Finance, University of Canterbury, New Zealand 
 Bonneville Power Administration, Portland, Oregon, USA 
 Department of Economics, University of Washington, Washington, USA 
Publication year
2020
Publication date
2020
Publisher
Walter de Gruyter GmbH
ISSN
18646042
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2732546433
Copyright
© 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.