It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Intelligent and coordinated unmanned aerial vehicle (UAV) swarm combat will be the main mode of warfare in the future, and mechanistic design of autonomous cooperation within swarms is the key to enhancing combat effectiveness. Exploration of the essential features and patterns of autonomous collaboration in unmanned swarms has become the focus of scientific research and technological applications, in keeping with the evolving conceptions of the military theatre. However, given the unique attributes of the military and the novelty of the warfare mode of unmanned swarms, few achievements have been reported in the existing research. In this study, we analysed the military requirements of unmanned swarm operations and proposed an analytic framework for autonomous collaboration. Then, a literature review addressing swarm evolution dynamics, game-based swarm collaboration, and collaborative evolution on complex networks was conducted. Next, on the basis of the above work, we designed a community network for unmanned swarm cooperation and constructed a collaborative evolution model based on the multiplayer public goods game (PGG). Furthermore, according to the “network” and “model”, the dynamic evolution process of swarm collaboration was formally deduced. Finally, a simulation was conducted to analyse the influence of relevant parameters (i.e., swarm size, degree distribution, cost, multiplication factor) on the collaborative behaviour of unmanned swarms. According to the simulation results, some reasonable suggestions for collaborative management and control in swarm operation are given, which can provide theoretical reference and decision-making support for the design of coordination mechanisms and improved combat effectiveness in unmanned swarm operation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Naval University of Engineering, Weaponry Engineering College, Wuhan, China (GRID:grid.472481.c) (ISNI:0000 0004 1759 6293)
2 Naval University of Engineering, Electronics Engineering College, Wuhan, China (GRID:grid.472481.c) (ISNI:0000 0004 1759 6293)
3 Army Engineering University of PLA, Institute of Command and Control Engineering, Nanjing, China (GRID:grid.440614.3) (ISNI:0000 0001 0702 1566)
4 Naval Aviation University, Qingdao Campus, Qingdao, China (GRID:grid.440614.3)