It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The few-layer Ti3C2Tx/MoS2 heterostructure was successfully prepared via vertically growing of MoS2 nanosheets on the few-layer Ti3C2Tx matrix using hydrothermal method. The tribological properties as additive in mineral oil (150N) were evaluated in detail. The 0.3 wt% of few-layer Ti3C2Tx/MoS2 heterostructure addition amount can reduce the friction and wear of 150N by 39% and 85%, respectively. Moreover, the enhancement effect of few-layer Ti3C2Tx/MoS2 on tribological properties of 150N is superior to that of few-layer Ti3C2Tx, MoS2 nanosheets, and their mechanical mixture. Based on the characterization and analysis of wear debris and wear track, such excellent tribological properties of the few-layer Ti3C2Tx/MoS2 heterostructure derive from its structural advantage toward good dispersion, the synergistic lubrication of Ti3C2Tx and MoS2 nanosheets during the rubbing process, and the formation of tribo-film.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Chengdu, China (GRID:grid.263901.f) (ISNI:0000 0004 1791 7667)
2 Southwest Jiaotong University, Tribology Research Institute, School of Mechanical Engineering, Chengdu, China (GRID:grid.263901.f) (ISNI:0000 0004 1791 7667)
3 Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Chengdu, China (GRID:grid.263901.f) (ISNI:0000 0004 1791 7667); Southwest Jiaotong University, Tribology Research Institute, School of Mechanical Engineering, Chengdu, China (GRID:grid.263901.f) (ISNI:0000 0004 1791 7667)