Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The use of economic methods to design and fabricate flexible copper sensors decorated with bismuth micro/nanodentrites for the detection of lead and cadmium in sweat is demonstrated. The flexible copper sensors were constructed with simple and cost-effective materials; namely, flexible and adhesive conductive copper tape, adhesive label containing the design of a three-electrode electrochemical system, and nail polish or spray as a protective layer. The flexible copper device consisted of a working electrode decorated with bismuth micro/nanodentrites using an electrodeposition technique, a copper pseudo-reference and copper counter electrodes. Under optimal experimental conditions, the flexible sensing platform showed excellent performance toward the detection of lead and cadmium using differential pulse anodic stripping voltammetry (DPAdSV) in a wide linear range from 2.0 μM to 50 μM with acceptable reproducibility and repeatability, and limits of detection and quantification of 5.36 and 17.9 μM for Cd2+ ions and 0.76 μM and 2.5 for Pb2+ ions. Studies of addition and recovery in spiked artificial sweat sample were performed, with a recovery of 104.6%. The flexible copper device provides a great opportunity for application in wearable perspiration-based healthcare systems or portable sensors to detect toxic metals in biological samples.

Details

Title
Design and Fabrication of Flexible Copper Sensor Decorated with Bismuth Micro/Nanodentrites to Detect Lead and Cadmium in Noninvasive Samples of Sweat
Author
de Campos, Anderson M 1 ; Silva, Robson R 2 ; Calegaro, Marcelo L 3   VIAFID ORCID Logo  ; Raymundo-Pereira, Paulo A 4 

 Chair of Physical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandstr. 5-13, 81377 Munich, Germany 
 Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden 
 São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13566-590, Brazil 
 São Carlos Institute of Physics, University of São Paulo (USP), São Carlos 13566-590, Brazil 
First page
446
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22279040
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734618260
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.