Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The hot pressing parameters and fiber ratio have an important influence on the dielectric properties of aramid insulating paper. In order to deeply explore its influence and the mechanism behind it, aramid insulating papers were made with different hot pressing temperatures and pressures as well as fiber ratios. Its tightness, dielectric constant, and AC breakdown strength were tested, and its microstructure was analyzed by scanning electron microscopy. It was found that with an increase in hot pressing temperature, pressure, and fibrid content, the overall dielectric constant of the insulating paper showed a slight upward trend, while the tightness and AC breakdown strength continued to increase. Hot pressing temperature and pressure have a synergistic effect on the dielectric properties of insulating paper. The effects of these two parameters on the dielectric properties of insulating paper are similar, while the AC breakdown strength is greatly affected by the fiber ratio. In this paper, the influence mechanism by which the microstructure and fiber crystallinity of insulating paper is affected in the hot pressing process is discussed.

Details

Title
Effects of Hot Pressing Temperature and Pressure on Dielectric Properties of Aramid Insulating Paper
Author
Yao, Yuanxin 1 ; Huang, Meng 1   VIAFID ORCID Logo  ; Ma, Jie 2 ; Su, Yanxiao 1 ; Shi, Sheng 1 ; Wang, Chunhe 1 

 State Key Laboratory of New Energy Power System, School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China 
 State Key Laboratory of New Energy Power System, School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China; State Grid Beijing Urban Power Supply Company, Beijing 100031, China 
First page
8314
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734627202
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.