Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

The fall armyworm (FAW) is of tropical–subtropical origin and defined as one of the most destructive agricultural pests globally. Superior migratory performance, reproductive ability and adaptability make it successful in causing a serious loss to agricultural production. Since this species lacks a diapause mechanism, temperature influences the population dynamic of the FAW to a great extent and changes metabolic and developmental states as a result, indirectly affecting the degree of crop infested. Control technologies can be put forward comprehensively in consideration of the effects of temperature on the FAW. In this review, we discussed the biological manifestation and tolerance of the FAW with various temperatures and proposed constructive suggestions for controlling this species and future research direction. This information is valuable for understanding the relationships between insect pests and temperature, strengthening the monitoring and pest control, providing service and support for newly developed strategies in the near future.

Abstract

The fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith, 1797), known as an important agricultural pest around the world, is indigenous to the tropical–subtropical regions in the Western Hemisphere, although its distribution has expanded over large parts of America, Africa, Asia and Oceania in the last few years. The pest causes considerable costs annually coupled with its strong invasion propensity. Temperature is identified as the dominant abiotic factor affecting herbivorous insects. Several efforts have reported that temperature directly or indirectly influences the geographic distribution, phenology and natural enemies of the poikilothermal FAW, and thus may affect the damage to crops, e.g., the increased developmental rate accelerates the intake of crops at higher temperatures. Under some extreme temperatures, the FAW is likely to regulate various genes expression in response to environmental changes, which causes a wider viability and possibility of invasion threat. Therefore, this paper seeks to review and critically consider the variations of developmental indicators, the relationships between the FAW and its natural enemies and the temperature tolerance throughout its developmental stage at varying levels of heat/cold stress. Based on this, we discuss more environmentally friendly and economical control measures, we put forward future challenges facing climate change, we further offer statistical basics and instrumental guidance significance for informing FAW pest forecasting, risk analyses and a comprehensive management program for effective control globally.

Details

Title
Impact of Temperature Change on the Fall Armyworm, Spodoptera frugiperda under Global Climate Change
Author
Xiao-Rui, Yan 1 ; Zhen-Ying, Wang 2 ; Shi-Qian, Feng 2   VIAFID ORCID Logo  ; Zi-Hua Zhao 1 ; Zhi-Hong, Li 1 

 MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; [email protected] (X.-R.Y.); [email protected] (Z.-H.Z.); Sanya Institute of China Agricultural University, Sanya 572025, China 
 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; [email protected] (Z.-Y.W.); [email protected] (S.-Q.F.) 
First page
981
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20754450
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734629379
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.