Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The incidence of diabetes mellitus (DM), one of the most common chronic metabolic disorders, has increased dramatically over the past decade and has resulted in higher rates of morbidity and mortality worldwide. The enzyme, α-Glucosidase (α-GLy), is considered a therapeutic target for the treatment of type 2 DM. Herein, we synthesized arylidene, heterocyclic, cyanoetoxy- and propargylated derivatives of quinopimaric acid (levopimaric acid diene adduct with p-benzoquinone) 150 and, first, evaluated their ability to inhibit α-GLy. Among the tested compounds, quinopimaric acid 1, 2,3-dihydroquinopimaric acid 8 and its amide and heterocyclic derivatives 9, 30, 33, 39, 44, with IC50 values of 35.57–65.98 μM, emerged as being good inhibitors of α-GLy. Arylidene 1β-hydroxy and 1β,13α-epoxy methyl dihydroquinopimarate derivatives 6, 7, 2629, thiadiazole 32, 1a,4a-dehydroquinopimaric acid 40 and its indole, nitrile and propargyl hybrids 3538, 42, 45, 48, and 50 showed excellent inhibitory activities. The most active compounds 38, 45, 48, and 50 displayed IC50 values of 0.15 to 0.68 μM, being 1206 to 266 more active than acarbose (IC50 of 181.02 μM). Kinetic analysis revealed the most active diterpene indole with an alkyne substituent 45 as a competitive inhibitor with Ki of 50.45 μM. Molecular modeling supported this finding and suggested that the indole core plays a key role in the binding. Compound 45 also has favorable pharmacokinetic and safety properties, according to the computational ADMET profiling. The results suggested that quinopimaric acid derivatives should be considered as potential candidates for novel alternative therapies in the treatment of type 2 diabetes.

Details

Title
New Molecules of Diterpene Origin with Inhibitory Properties toward α-Glucosidase
Author
Tretyakova, Elena 1 ; Smirnova, Irina 1 ; Kazakova, Oxana 1   VIAFID ORCID Logo  ; Ha Thi Thu Nguyen 2 ; Shevchenko, Alina 3 ; Sokolova, Elena 3 ; Babkov, Denis 3   VIAFID ORCID Logo  ; Spasov, Alexander 3   VIAFID ORCID Logo 

 Ufa Institute of Chemistry, Ufa Federal Research Centre, Russian Academy of Sciences, 71 Prospect Oktyabrya, 450054 Ufa, Russia 
 Institute of Chemistry, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Dist., Hanoi 100000, Vietnam 
 Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya Str. 39, 400087 Volgograd, Russia 
First page
13535
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734644887
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.