Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Reconfigurable intelligent surface (RIS)-aided wireless communications systems are one the promising wireless communication system where the wave can be guided by the RIS. It is envisioned that beyond-5G/6G communication will have a low-cost, high spectral efficiency, high energy efficiency, and smart wireless environment. In this paper, initially, different measurement techniques of the RIS have been discussed, which are available in the literature. Then, a new type of RIS has been proposed. Finally, a different parameter measurement technique for our proposed RIS has been presented. A low-cost FR4 substrate with a height of 1.6 mm was considered to design the RIS in the sub-6 GHz frequency band. Another important thing is that our proposed IRS is a single-layer substrate backed by a copper plate. The area of each unit cell was 42 mm × 42 mm. The RIS was designed to operate at the central frequency of the 3.5 GHz frequency band. The novelty of the proposed RIS is that it is a polarization-independent structure. Thus, polarization-related losses can be overcome using this structure. A 10×10-unit cell array was designed to check the radiation performance. The magnitude of the reflection coefficients was measured in our laboratory for the proposed configuration.

Details

Title
Parameters and Measurement Techniques of Reconfigurable Intelligent Surfaces
Author
Rana, Biswarup 1   VIAFID ORCID Logo  ; Sung-Sil Cho 2 ; Hong, Ic-Pyo 2   VIAFID ORCID Logo 

 Smart Natural Space Research Centre, Kongju National University, Cheonan 31080, Korea 
 Department of Smart Information Technology Engineering, Kongju National University, Cheonan 31080, Korea 
First page
1841
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734662011
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.