Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

High-N Ni-free stainless steels are used for their excellent mechanical properties combined with their high corrosion resistance, especially for biomedical applications. Even though it is well-known that secondary hardening during annealing after cold working has been observed in many materials, this phenomenon was not reported for these materials, one of the best known being Biodur108©, although numerous efforts have been made to increase its hardness. In this work, thermomechanical treatments at low temperature of cold-deformed Biodur108© were conducted to increase the hardness. Hardness as high as 830 Hv was obtained. For this material, the annealing of a deformed sample at intermediate temperature leads to a secondary hardening phenomenon. The mechanisms responsible for this secondary hardening were analyzed. It was found that for deformed samples, annealing at 575 °C leads to the formation of small Cr2N precipitates along grain boundaries and sub-grain boundaries, and simultaneously with a new body-centered cubic (BCC) phase that possesses a super structure. The newly formed phases have sub-micrometric grain sizes.

Details

Title
Secondary Hardening of a High-N Ni-Free Stainless Steel
Author
Siredey-Schwaller, Nathalie; Charbonnier, Pierre; Zhang, Yudong; Guyon, Julien  VIAFID ORCID Logo  ; Perroud, Olivier; Laheurte, Pascal
First page
7505
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734662038
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.