Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Due to the introduction of silicon carbide reinforcement, the physical and cutting properties of SiCp/Mg composites are very different from those of metal composites. Nanosecond pulse laser processing is more efficient than traditional processing for SiCp/Mg composites. A low-power pulsed fiber laser was used to etch 3.0 mm thick SiCp/Mg composites. The effect of low laser power (0~50 W) on the morphology and heat-affected zone of the SiCp/Mg composite after etching was studied. The results show that when the laser power increases, the material accumulation at the ablation end of the machining surface becomes more and more serious. With the increase in power, the differences in ablation width and ablation depth on the surface of composite materials do not increase proportionally. When the laser power increases gradually, the width of the heat-affected zone increases in the direction of the perpendicular laser beam and reaches the maximum value at the etched end.

Details

Title
Mechanism Analysis of Nanosecond Pulse Laser Etching of SiCp/Mg Composites
Author
Wu, Zhe 1 ; Song, Jianyang 1 ; Zhang, Yang 2   VIAFID ORCID Logo  ; Xue, Bo 1 ; Wang, Sijia 1 

 College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China 
 College of Science, Northeast Forestry University, Harbin 150040, China 
First page
7654
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734686874
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.