Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Intercropping is a sustainable method for cultivating medicinal herbs since it requires lower dependence on chemical fertilizers than a sole cropping system. In this study, we compared the effects of sole cropping and intercropping on early bolting, yield, and the chemical composition of Angelica sinensis (Oliv.) Diels. Field experiments were conducted, in 2018 and in 2019, using different cropping systems including sole cropping of A. sinensis (AS), sole cropping of Vicia faba (VF), and intercropping (without fertilization) at three ratios: one row of A. sinensis + three rows of V. faba, AS/VF (1:3), two rows of A. sinensis + two rows V. faba, AS/VF (2:2), three rows of A. sinensis + one row V. faba, AS/VF (3:1). The effect of each cropping system was evaluated by measuring the dry biomass of V. faba and the dry biomass, ferulic acid content, and essential oil content and composition of A. sinensis. The early bolting rate of A. sinensis was significantly lower in the intercropping system as compared with that in a sole cropping system. The AS/VF (3:1) intercropping pattern resulted in an optimal yield and the highest ferulic acid content of A. sinensis, highest dry biomass of V. faba, and highest land equivalent ratio (LER). Additionally, the A. sinensis was more aggressive (the aggressivity value of A. sinensis was positive, and its competitive ratio was >1) under AS/VF (3:1) intercropping pattern, and it dominated over V. faba (which had negative aggressivity values and a competitive ratio of <1) under AS/VF (3:1) intercropping pattern. Ligustilide was the most dominant component of the essential oil of A. sinensis, regardless of the cropping system; however, the chemical component of essential oil was not influenced by intercropping patterns. Overall, the AS/VF (3:1) intercropping pattern without fertilization was the most productive, with the highest LER and ferulic acid content. These data indicate that intercropping can serve as an alternative for reducing the use of chemical fertilizers and intercropping also decreases the early bolting rate of A. sinensis, thus, enabling its sustainable production.

Details

Title
Early Bolting, Yield, and Quality of Angelica sinensis (Oliv.) Diels Responses to Intercropping Patterns
Author
Yang, Lucun 1 ; Li, Jingjing 2 ; Xiao, Yuanming 1 ; Zhou, Guoying 1   VIAFID ORCID Logo 

 Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; The Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China 
 Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China 
First page
2950
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22237747
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734704344
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.