Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Rare earth elements such as neodymium (Nd) are important elements used mainly in developing new technologies. Although they are found in low concentrations in nature, they can be obtained by extracting solid samples such as phosphogypsum. Among the techniques, adsorption has been used successfully with several adsorbent materials. In this work, two strains of Spirulina platensis (LEB-18 and LEB-52) were employed as biosorbents for efficiently removing the Nd element from the aqueous media. Biosorption tests were carried out in a batch system, and the results of the biosorption kinetics showed that for both materials, the biosorption of Nd was better described by the Avrami model. Moreover, it could be considered that 80 min would be necessary to attain the equilibrium of Nd(III) using both biosorbents. The result of the biosorption isotherms showed that for both strains, the best-fitted model was the Liu model, having a maximum biosorption capacity of 72.5 mg g−1 for LEB-18 and 48.2 mg g−1 for LEB-52 at a temperature of 298 K. Thermodynamics of adsorption showed that for both LEB-18 and LEB-52 the process was favorable (∆G° < 0) and exothermic (∆H° −23.2 for LEB-18 and ∆H° −19.9 for LEB-52). Finally, both strains were suitable to uptake Nd, and the better result of LEB-18 could be attributed to the high amount of P and S groups in this biomass. Based on the results, a mechanism of electrostatic attraction of Nd3+ and phosphate and sulfate groups of both strains of Spirulina platensis was proposed.

Details

Title
Biosorption of Neodymium (Nd) from Aqueous Solutions Using Spirulina platensis sp. Strains
Author
Lima, Éder C 1   VIAFID ORCID Logo  ; Pinto, Diana 2 ; Netto, Matias Schadeck 3 ; Dos Reis, Glaydson S 4   VIAFID ORCID Logo  ; Silva, Luis F O 2 ; Dotto, Guilherme L 3   VIAFID ORCID Logo 

 Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre 90040-060, Brazil 
 Department of Civil and Environmental, Universidad De La Costa, Calle 58 # 55-66, Barranquilla 080002, Colombia 
 Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Santa Maria 97105-900, Brazil 
 Department of Forest Biomaterials and Technology, Biomass Technology Centre, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden 
First page
4585
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734713200
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.