Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to explore the methods of recycling waste paper, reduce environment pollution, and develop a circular economy, the application of waste corrugated paper to the strengthening of polylactic acid (PLA) was studied. Plant fiber from waste corrugated paper (WCPF) was used to prepare WCPF/PLA composite via co-extrusion. The WCPF was extracted from the waste corrugated paper by beating in a Valli beating machine and grinding in a disc grinder. KH-550 coupling agent was used to modify the surface of WCPF to improve the interface adhesive strength between the WCPF and PLA matrix. The effects of the contents of WCPF and KH-550 coupling agent on the mechanical properties, microstructure, crystallization properties, and thermostability of the WCPF/PLA composite were studied. The results show that the WCPF can be well separated from each other. The WCPF can be uniformly dispersed in the PLA matrix through a co-extrusion process. WCPF can increase the mechanical strength and deformation resistance ability of WCPF/PLA composite, and KH-550 coupling agent can further improve that of the WCPF/PLA composite. This study is of obvious significance to the recycling of waste paper and the development of a circular economy.

Details

Title
Preparation and Properties of Waste Corrugated Paper Fiber/Polylactic Acid Co-Extruded Composite
Author
Su, Jian 1   VIAFID ORCID Logo  ; Mannan, Yang 2 ; Zhang, Xiaomei 1 ; Fang, Changqing 2 ; Zheng, Yamin 1 ; Lu, Pei 1 ; Liu, Ming 3 

 Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710054, China 
 Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710054, China; School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China 
 Jiangsu Weixing New Materials Co., Ltd., Yangzhou 225600, China 
First page
4569
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734714110
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.