Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The safe operation of diesel engines performs a vital function in industrial production and life. Because diesel engines often work in harsh environmental conditions, they are prone to failure. Therefore, this paper proposes a fault analysis method based on a combination of optimized variational mode decomposition (VMD) and improved convolutional neural networks (CNN) to address the necessary need for preventive maintenance of diesel engines. The authentic vibration sign is first decomposed by using the (VMD) algorithm, then the greatest range of decomposition layers is decided by using scattering entropy and the useful components are preferentially chosen for reconstruction. The continuous wavelet transform (CWT) records preprocessing method is then delivered to radically change the noise-reduced vibration sign into a time-frequency map, which is fed into the CNN for model coaching and extraction of fault features. Finally, fault classification is realized by support vector machine (SVM) with excellent classification performance. Through preset fault experiments on diesel engines, it is established that the technique proposed in this paper can successfully identify fault states, and the classification accuracy is higher than alternative methods.

Details

Title
Diesel Engine Fault Diagnosis Method Based on Optimized VMD and Improved CNN
Author
Zhan, Xianbiao; Bai, Huajun; Yan, Hao; Wang, Rongcai; Guo, Chiming; Jia, Xisheng
First page
2162
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734714134
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.