Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cybersecurity has been widely used in various applications, such as intelligent industrial systems, homes, personal devices, and cars, and has led to innovative developments that continue to face challenges in solving problems related to security methods for IoT devices. Effective security methods, such as deep learning for intrusion detection, have been introduced. Recent research has focused on improving deep learning algorithms for improved security in IoT. This research explores intrusion detection methods implemented using deep learning, compares the performance of different deep learning methods, and identifies the best method for implementing intrusion detection in IoT. This research is conducted using deep learning models based on convolutional neural networks (CNNs), long short-term memory (LSTM), and gated recurrent units (GRUs). A standard dataset for intrusion detection in IoT is considered to evaluate the proposed model. Finally, the empirical results are analyzed and compared with the existing approaches for intrusion detection in IoT. The proposed method seemed to have the highest accuracy compared to the existing methods.

Details

Title
Intrusion Detection in IoT Using Deep Learning
Author
Alaa Mohammed Banaamah; Ahmad, Iftikhar  VIAFID ORCID Logo 
First page
8417
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734748319
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.