Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

It is challenging for a mobile robot to follow a specific target person in a dynamic environment, comprising people wearing similar-colored clothes and having the same or similar height. This study describes a novel framework for a person identification model that identifies a target person by merging multiple features into a single joint feature online. The proposed framework exploits the deep learning output to extract four features for tracking the target person without prior knowledge making it generalizable and more robust. A modified intersection over union between the current frame and the last frame is proposed as a feature to distinguish people, in addition to color, height, and location. To improve the performance of target identification in a dynamic environment, an online boosting method was adapted by continuously updating the features in every frame. Through extensive real-life experiments, the effectiveness of the proposed method was demonstrated by showing experimental results that it outperformed the previous methods.

Details

Title
Online Boosting-Based Target Identification among Similar Appearance for Person-Following Robots
Author
Algabri, Redhwan 1   VIAFID ORCID Logo  ; Choi, Mun-Taek 2   VIAFID ORCID Logo 

 Research Institute of Engineering and Technology, Hanyang University, Ansan 15588, Korea; School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea 
 School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea 
First page
8422
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734749236
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.