It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This work resolves a longstanding tension between the physically-expected stability of the microcanonical ensemble for gravitating systems and the fact that the known negative mode of the asymptotically flat Schwarzschild black hole decays too rapidly at infinity to affect the ADM energy boundary term at infinity. The key to our study is that we fix an appropriate off-shell notion of energy, which we obtain by constructing the microcanonical partition function as an integral transform of the canonical partition function. After applying the rule-of-thumb for Wick rotations from our recent companion paper to deal with the conformal mode problem of Euclidean gravity, we find a positive definite action for linear perturbations about any Euclidean Schwarzchild (-AdS) black hole. Most of our work is done in a cavity with reflecting boundary conditions, but the cavity wall can be removed by taking an appropriate limit.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of California at Santa Barbara, Department of Physics, Santa Barbara, USA (GRID:grid.133342.4) (ISNI:0000 0004 1936 9676)
2 University of Cambridge, Department of Applied Mathematics and Theoretical Physics, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000000121885934)