It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Bacillus circulans (B. circulans) is widely used as an electrogenic bacterium in microbial fuel cell (MFC) technology. This study evaluated whether B. circulans can ferment glucose to generate electricity and mitigate the effects of human skin pathogens. The electricity production of B. circulans was examined by measuring the voltage difference and verified using a ferrozine assay in vitro. To investigate the fermentation effects of B. circulans on inhibition of human skin pathogens, Cutibacterium acnes (C. acnes) was injected intradermally into mice ears to induce an inflammatory response. The results revealed that the glucose–B. circulans co-culture enhanced electricity production and significantly supressed C. acnes growth. The addition of roseoflavin to inhibit flavin production considerably reduced the electrical energy generated by B. circulans through metabolism and, in vivo test, recovered C. acnes count and macrophage inflammatory protein 2 (MIP-2) levels. This suggests that B. circulans can generate electrons that affect the growth of C. acnes through flavin-mediated electron transfer and alleviate the resultant inflammatory response. Our findings demonstrate that probiotics separated from natural substances and antimicrobial methods of generating electrical energy through carbon source fermentation can help in the treatment of bacterial infections.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 National Central University, Department of Biomedical Sciences and Engineering, Taoyuan, Taiwan R.O.C. (GRID:grid.37589.30) (ISNI:0000 0004 0532 3167)