It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The study area located at southeast Gansu, China, has long been afflicted by the intense occurrence of geohazards. The study area is characterized by interleaving terrain of precipitous mountains and valley basins, abundant precipitation, and complicated geological setting. In this work, 1144 geohazards including 759 landslides, 281 debris flows, and 104 collapse were presented and their types were categorized in detail. Then, the distribution of geohazards were analyzed and the controlling role of hazard-inducing environment and triggering factors on geohazards were preliminary presented.
Results
In this work, correlation analysis between geohazards and geological, topographical, and geomorphological context was conducted. Concave slopes with height smaller than 200 m and slope gradient between 21° and 40° is the favorable topographic feature for landslide occurrence and the predominant slope aspects of landslides are southwest, south, west, and southeast. Collapse generally occurs in slope with gradient larger than 45°. Valleys with valley gradient less than 400‰, valley height between 100 and 500 m, and watershed area of 1–10 km2 register the largest percentage and the most favorable slope gradient for the supply of solid source at the debris flow source area is 25°–45°. The preferable strata for geohazards (landslide, collapse and debris flow) are Middle and upper Pleistocene loess, Holocene diluvium, Silurian phyllite and slate, Neogene mudstone, and Devonian schist and gneiss, and most geohazards occurred in tectonic erosional middle altitude mountain, tectonic erosional high-middle altitude mountain, tectonic erosional-diluvial planation surface. In addition, the controlling role of triggering factors, i.e., precipitation, earthquake, and human engineering activity was discussed and described in this work.
Conclusion
Geohazards in the study area are synthetically controlled by the hazard-inducing environment and triggering factors. The complicated sliding-prone strata and steep topography resulted from strong tectonic movement provides a favorable basis for the development and formation of geohazards. Heavy rainfall, strong seismic motion, and human engineering activity are the main triggering factors for geohazard occurrence.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Chinese Academy of Geological Sciences, Institute of Geomechanics, Beijing, China (GRID:grid.418538.3) (ISNI:0000 0001 0286 4257); Ministry of Natural Resources, Observation and Research Station of Geological Disaster in Baoji, Baoji, China (GRID:grid.453137.7) (ISNI:0000 0004 0406 0561); Ministry of Natural Resources, Key Laboratory of Active Tectonics and Geological Safety, Beijing, China (GRID:grid.453137.7) (ISNI:0000 0004 0406 0561)
2 Geological Survey of Gansu Province, Lanzhou, China (GRID:grid.453137.7)