It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Overcoming the skin barrier properties efficiently, temporarily, and safely for successful transdermal drug delivery remains a challenge. We synthesized three series of potential skin permeation enhancers derived from natural amino acid derivatives proline, 4-hydroxyproline, and pyrrolidone carboxylic acid, which is a component of natural moisturizing factor. Permeation studies using in vitro human skin identified dodecyl prolinates with N-acetyl, propionyl, and butyryl chains (Pro2, Pro3, and Pro4, respectively) as potent enhancers for model drugs theophylline and diclofenac. The proline derivatives were generally more active than 4-hydroxyprolines and pyrrolidone carboxylic acid derivatives. Pro2–4 had acceptable in vitro toxicities on 3T3 fibroblast and HaCaT cell lines with IC50 values in tens of µM. Infrared spectroscopy using the human stratum corneum revealed that these enhancers preferentially interacted with the skin barrier lipids and decreased the overall chain order without causing lipid extraction, while their effects on the stratum corneum protein structures were negligible. The impacts of Pro3 and Pro4 on an in vitro transepidermal water loss and skin electrical impedance were fully reversible. Thus, proline derivatives Pro3 and Pro4 have an advantageous combination of high enhancing potency, low cellular toxicity, and reversible action, which is important for their potential in vivo use as the skin barrier would quickly recover after the drug/enhancer administration is terminated.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Charles University, Faculty of Pharmacy in Hradec Králové, Skin Barrier Research Group, Hradec Králové, Czech Republic (GRID:grid.4491.8) (ISNI:0000 0004 1937 116X)
2 Charles University, Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences, Hradec Králové, Czech Republic (GRID:grid.4491.8) (ISNI:0000 0004 1937 116X)
3 Charles University, Faculty of Pharmacy in Hradec Králové, Department of Organic and Bioorganic Chemistry, Hradec Králové, Czech Republic (GRID:grid.4491.8) (ISNI:0000 0004 1937 116X)