It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Poly (3-hexylthiophene) (P3HT) is one of the most attractive hole transport materials (HTMs) for the pursuit of stable, low-cost, and high-efficiency perovskite solar cells (PSCs). However, the poor contact and the severe recombination at P3HT/perovskite interface lead to a low power conversion efficiency (PCE). Thus, we construct a molecular bridge, 2-((7-(4-(bis(4-methoxyphenyl)amino)phenyl)−10-(2-(2-ethoxyethoxy)ethyl)−10H-phenoxazin-3-yl)methylene)malononitrile (MDN), whose malononitrile group can anchor the perovskite surface while the triphenylamine group can form π−π stacking with P3HT, to form a charge transport channel. In addition, MDN is also found effectively passivate the defects and reduce the recombination to a large extent. Finally, a PCE of 22.87% has been achieved with MDN-doped P3HT (M-P3HT) as HTM, much higher than the efficiency of PSCs with pristine P3HT. Furthermore, MDN gives the un-encapsulated device enhanced long-term stability that 92% of its initial efficiency maintain even after two months of aging at 75% relative humidity (RH) follow by one month of aging at 85% RH in the atmosphere, and the PCE does not change after operating at the maximum power point (MPP) under 1 sun illumination (~45 oC in N2) over 500 hours.
The poor contact at poly(3-hexylthiophene)/perovskite interface has led to unsatisfactory performance in solar cells. To resolve this issue, the authors introduce a molecular bridge to form a charge transport channel, realizing devices with maximum efficiency value of 22.87% and long-term stability.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details






1 South China Normal University, Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, Guangzhou, China (GRID:grid.263785.d) (ISNI:0000 0004 0368 7397)
2 South China Normal University, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, Guangzhou, China (GRID:grid.263785.d) (ISNI:0000 0004 0368 7397)
3 Nanjing University, Laboratory of Solid State Microstructures, Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X)