It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Detection of malaria parasitaemia in samples that are negative by rapid diagnostic tests (RDTs) requires resource-intensive molecular tools. While pooled testing using a two-step strategy provides a cost-saving alternative to the gold standard of individual sample testing, statistical adjustments are needed to improve accuracy of prevalence estimates for a single step pooled testing strategy.
Methods
A random sample of 4670 malaria RDT negative dried blood spot samples were selected from a mass testing and treatment trial in Asembo, Gem, and Karemo, western Kenya. Samples were tested for malaria individually and in pools of five, 934 pools, by one-step quantitative polymerase chain reaction (qPCR). Maximum likelihood approaches were used to estimate subpatent parasitaemia (RDT-negative, qPCR-positive) prevalence by pooling, assuming poolwise sensitivity and specificity was either 100% (strategy A) or imperfect (strategy B). To improve and illustrate the practicality of this estimation approach, a validation study was constructed from pools allocated at random into main (734 pools) and validation (200 pools) subsets. Prevalence was estimated using strategies A and B and an inverse-variance weighted estimator and estimates were weighted to account for differential sampling rates by area.
Results
The prevalence of subpatent parasitaemia was 14.5% (95% CI 13.6–15.3%) by individual qPCR, 9.5% (95% CI (8.5–10.5%) by strategy A, and 13.9% (95% CI 12.6–15.2%) by strategy B. In the validation study, the prevalence by individual qPCR was 13.5% (95% CI 12.4–14.7%) in the main subset, 8.9% (95% CI 7.9–9.9%) by strategy A, 11.4% (95% CI 9.9–12.9%) by strategy B, and 12.8% (95% CI 11.2–14.3%) using inverse-variance weighted estimator from poolwise validation. Pooling, including a 20% validation subset, reduced costs by 52% compared to individual testing.
Conclusions
Compared to individual testing, a one-step pooled testing strategy with an internal validation subset can provide accurate prevalence estimates of PCR-positivity among RDT-negatives at a lower cost.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer