It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Dihydroartemisinin-piperaquine (DHA-PPQ) is an alternative first-line antimalarial to artemether-lumefantrine in Kenya. However, recent reports on the emergence of PPQ resistance in Southeast Asia threaten its continued use in Kenya and Africa. In line with the policy on continued deployment of DHA-PPQ, it is imperative to monitor the susceptibility of Kenyan parasites to PPQ and other antimalarials.
Methods
Parasite isolates collected between 2008 and 2021 from individuals with naturally acquired P. falciparum infections presenting with uncomplicated malaria were tested for in vitro susceptibility to piperaquine, dihydroartemisinin, lumefantrine, artemether, and chloroquine using the malaria SYBR Green I method. A subset of the 2019–2021 samples was further tested for ex vivo susceptibility to PPQ using piperaquine survival assay (PSA). Each isolate was also characterized for mutations associated with antimalarial resistance in Pfcrt, Pfmdr1, Pfpm2/3, Pfdhfr, and Pfdhps genes using real-time PCR and Agena MassARRAY platform. Associations between phenotype and genotype were also determined.
Results
The PPQ median IC50 interquartile range (IQR) remained stable during the study period, 32.70 nM (IQR 20.2–45.6) in 2008 and 27.30 nM (IQR 6.9–52.8) in 2021 (P=0.1615). The median ex vivo piperaquine survival rate (IQR) was 0% (0–5.27) at 95% CI. Five isolates had a PSA survival rate of ≥10%, consistent with the range of PPQ-resistant parasites, though they lacked polymorphisms in Pfmdr1 and Plasmepsin genes. Lumefantrine and artemether median IC50s rose significantly to 62.40 nM (IQR 26.9–100.8) (P = 0.0201); 7.00 nM (IQR 2.4–13.4) (P = 0.0021) in 2021 from 26.30 nM (IQR 5.1–64.3); and 2.70 nM (IQR 1.3–10.4) in 2008, respectively. Conversely, chloroquine median IC50s decreased significantly to 10.30 nM (IQR 7.2–20.9) in 2021 from 15.30 nM (IQR 7.6–30.4) in 2008, coinciding with a decline in the prevalence of Pfcrt 76T allele over time (P = 0.0357). The proportions of piperaquine-resistant markers including Pfpm2/3 and Pfmdr1 did not vary significantly. A significant association was observed between PPQ IC50 and Pfcrt K76T allele (P=0.0026).
Conclusions
Circulating Kenyan parasites have remained sensitive to PPQ and other antimalarials, though the response to artemether (ART) and lumefantrine (LM) is declining. This study forms a baseline for continued surveillance of current antimalarials for timely detection of resistance.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer