It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Hyperkalemia increases the risk of mortality and cardiovascular-related hospitalizations in patients with hemodialysis. Predictors of hyperkalemia are yet to be identified. We aimed at developing a nomogram able to predict hyperkalemia in patients with hemodialysis.
Methods
We retrospectively screened patients with end-stage renal disease (ESRD) who had regularly received hemodialysis between Jan 1, 2017, and Aug 31, 2021, at Lishui municipal central hospital in China. The outcome for the nomogram was hyperkalemia, defined as serum potassium [K+] ≥ 5.5 mmol/L. Data were collected from hemodialysis management system. Least Absolute Shrinkage Selection Operator (LASSO) analysis selected predictors preliminarily. A prediction model was constructed by multivariate logistic regression and presented as a nomogram. The performance of nomogram was measured by the receiver operating characteristic (ROC) curve, calibration diagram, and decision curve analysis (DCA). This model was validated internally by calculating the performance on a validation cohort.
Results
A total of 401 patients were enrolled in this study. 159 (39.65%) patients were hyperkalemia. All participants were divided into development (n = 256) and validation (n = 145) cohorts randomly. Predictors in this nomogram were the number of hemodialysis session, blood urea nitrogen (BUN), serum sodium, serum calcium, serum phosphorus, and diabetes. The ROC curve of the training set was 0.82 (95%CI 0.77, 0.88). Similar ROC curve was achieved at validation set 0.81 (0.74, 0.88). The calibration curve demonstrated that the prediction outcome was correlated with the observed outcome.
Conclusion
This nomogram helps clinicians in predicting the risk of PEW and managing serum potassium in the patients with hemodialysis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer