Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Osteoporosis is a systemic skeletal disorder where osteoclasts are prevalent among osteoblasts. Oxidative stress is one of the main causes of osteoporosis, and nuclear factor erythroid-2-related factor 2 (Nrf2) is the master regulator of antioxidant responses. Phytol, a diterpene isolated from Stevia rebaudiana leaves, has many biological effects, including antimicrobial, antioxidant, and anti-inflammatory effects. This study investigated the crosstalk between Nrf2 and osteoclast differentiation in the presence of phytol. Phytol inhibited osteoclast differentiation through TRAP-positive and F-actin formation. The expression of anti-nuclear factor of activated T cells-c1 (NFATc1) and c-Fos was suppressed by phytol, as shown using Western blot and RT-PCR analysis. Phytol inhibited oxidative stress by suppressing reactive oxidant species (ROS) accumulation while recovering antioxidant enzymes, including superoxide dismutase and catalase. Additionally, phytol ameliorated osteoclast-specific differentiation, function, and oxidative stress through Nrf2 regulation by siRNA transfection. In conclusion, these data demonstrate the inhibitory effect of phytol on osteoclast differentiation through Nrf2 regulation, suggesting its potential use in oxidative stress-related osteoporosis and bone diseases.

Details

Title
Phytol Suppresses Osteoclast Differentiation and Oxidative Stress through Nrf2/HO-1 Regulation in RANKL-Induced RAW264.7 Cells
Author
Eun-Nam, Kim 1 ; Nguyen Minh Trang 1 ; Kang, Heesun 2 ; Kim, Ki Hyun 2   VIAFID ORCID Logo  ; Gil-Saeng Jeong 1 

 College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea 
 School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea 
First page
3596
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734409
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2739422913
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.