Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Position and orientation deviations (PODs), being affected by surface deviations, occur after parts are assembled, which directly affects the performance of mechanical products. Moreover, mechanical parts are generally assembled with multiple constraint planes, and the generated PODs are influenced by the type of positioning. Therefore, the PODs of multiple planes should be computed in the design stage according to the predicted surface deviations, to control the product performance. However, even though the POD computation of multiple planes has been researched, the effects of surface deviations and multiple types of positioning cannot be considered simultaneously. To address this problem, this study proposes a point-by-point-contact-based approach. The six-point positioning principle is employed to determine the possible number of contact points on each mating plane. The surface deviations are modeled from the perspective of manufacturing errors. Furthermore, the contact points on each mating plane are determined successively using both the strategies of progressively approaching position and of the orientation and recursion of contact points. As a result, the PODs are acquired. The feasibility and usefulness of the proposed approach are verified through a case study. Herein, effects of surface deviations and multiple types of positioning on PODs are unified as contact point variations. Consequently, this approach is expected to assist with accurately controlling the POD influence on the performance of mechanical products in the design stage.

Details

Title
Point-by-Point-Contact-Based Approach to Compute Position and Orientation between Parts Assembled by Multiple Non-Ideal Planes
Author
Zhang, Jian 1 ; Qiao, Lihong 1 ; Huang, Zhicheng 1   VIAFID ORCID Logo  ; Anwer, Nabil 2   VIAFID ORCID Logo 

 Department of Industrial and Manufacturing Systems Engineering, Beihang University, Beijing 100191, China 
 Universite Paris-Saclay, ENS Paris-Saclay, LURPA, 91190 Gif-sur-Yvette, France 
First page
11596
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2739422922
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.