Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the process of steel plate production, whether cold straightening is required is significant to reduce costs and improve product qualification rates. It is not effective by adopting classic machine learning judgment algorithms. Concerning the effectiveness of ensemble learning methods on improving traditional machine learning methods, a steel plate cold straightening auxiliary decision-making algorithm based on multiple machine learning competition strategies is proposed in this paper. The algorithm firstly adopts the rough set method to simplify the attributes of the conditional factors for affecting whether the steel plate cold straightening is required, and reduce the attribute dimensions of the steel plate cold straightening auxiliary decision-making data set. Secondly, the competition of training multiple different learners on the data set produces the optimal base classifier. Finally, the final classifier is generated by training weights on the optimal base classifier and combining it with a centralized strategy. While the hit rate of good products of the final classifier is 97.9%, the hit rate of defective products is 90.9%. As such, the accuracy rate is better than the single kind of simple machine learning algorithms, which effectively improves the product quality of steel plates in practical production applications.

Details

Title
Auxiliary Decision-Making System for Steel Plate Cold Straightening Based on Multi-Machine Learning Competition Strategies
Author
Zhen-Hu, Dai 1 ; Rui-Hua, Wang 2   VIAFID ORCID Logo  ; Ji-Hong, Guan 3 

 School of Electronic and Information Engineering, Tongji University, Shanghai 200070, China; Shanghai Baosight Software Co., Ltd., Shanghai 201203, China 
 School of Software, Nanchang University, Nanchang 330047, China 
 School of Electronic and Information Engineering, Tongji University, Shanghai 200070, China 
First page
11473
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2739425688
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.