Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Catheter-associated urinary tract infections (CAUTIs) are significant complications among catheterized patients, resulting in increased morbidity, mortality rates, and healthcare costs. Foley urinary catheters coated with synthesized silver nanoparticles (AgNPs) using Eucalyptus camaldulensis leaf extract were developed using a green chemistry principle. In situ-deposited AgNPs with particle size ranging between 20 and 120 nm on the catheter surface were illustrated by scanning electron microscopy. Atomic force microscopy revealed the changes in surface roughness after coating with nanoparticles. The coated catheter could significantly inhibit microbial adhesion and biofilm formation performed in pooled human urine-supplemented media to mimic a microenvironment during infections (p 0.05). AgNPs-coated catheter exhibited broad-spectrum antimicrobial activity against important pathogens, causing CAUTIs with no cytotoxic effects on HeLa cells. A reduction in microbial viability in biofilms was observed under confocal laser scanning microscopy. A catheter bridge model demonstrated complete prevention of Proteus mirabilis migration by the coated catheter. Significant inhibition of ascending motility of Escherichia coli and P. mirabilis along the AgNPs-coated catheter was demonstrated in an in vitro bladder model (p 0.05). The results suggested that the AgNPs-coated urinary catheter could be applied as an alternative strategy to minimize the risk of CAUTIs by preventing bacterial colonization and biofilm formation.

Details

Title
Eucalyptus-Mediated Synthesized Silver Nanoparticles-Coated Urinary Catheter Inhibits Microbial Migration and Biofilm Formation
Author
Lethongkam, Sakkarin 1 ; Paosen, Supakit 2 ; Bilhman, Siwaporn 1   VIAFID ORCID Logo  ; Dumjun, Krittima 3 ; Wunnoo, Suttiwan 1 ; Choojit, Suntree 4 ; Ratchaneewan Siri 5 ; Daengngam, Chalongrat 5 ; Voravuthikunchai, Supayang P 1 ; Bejrananda, Tanan 6 

 Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand 
 Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Science for Industry Program, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand 
 Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand 
 Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand 
 Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand 
 Department of Surgery, Division of Urology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand 
First page
4059
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2739447045
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.