Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Grafting polyethylene glycol (PEG) onto a polymer’s surface is widely used to improve biocompatibility by reducing protein and cell adhesion. Although PEG is considered to be bioinert, its incorporation onto biomaterials has shown to improve cell viability depending on the amount and molecular weight (MW) used. This phenomenon was studied here by grafting PEG of three MW onto polyurethane (PU) substrata at three molar concentrations to assess their effect on PU surface properties and on the viability of osteoblasts and fibroblasts. PEG formed a covering on the substrata which increased the hydrophilicity and surface energy of PUs. Among the results, it was observed that osteoblast viability increased for all MW and grafting densities of PEG employed compared with unmodified PU. However, fibroblast viability only increased at certain combinations of MW and grafting densities of PEG, suggesting an optimal level of these parameters. PEG grafting also promoted a more spread cell morphology than that exhibited by unmodified PU; nevertheless, cells became apoptotic-like as PEG MW and grafting density were increased. These effects on cells could be due to PEG affecting culture medium pH, which became more alkaline at higher MW and concentrations of PEG. Results support the hypothesis that surface energy of PU substrates can be tuned by controlling the MW and grafting density of PEG, but these parameters should be optimized to promote cell viability without inducing apoptotic-like behavior.

Details

Title
Influence of Molecular Weight and Grafting Density of PEG on the Surface Properties of Polyurethanes and Their Effect on the Viability and Morphology of Fibroblasts and Osteoblasts
Author
Abreu-Rejón, Antonio David 1 ; Herrera-Kao, Wilberth Antonio 1 ; May-Pat, Alejandro 1 ; Ávila-Ortega, Alejandro 2   VIAFID ORCID Logo  ; Rodríguez-Fuentes, Nayeli 3   VIAFID ORCID Logo  ; Jorge Alonso Uribe-Calderón 1 ; Cervantes-Uc, José Manuel 1   VIAFID ORCID Logo 

 Centro de Investigación Científica de Yucatán, A.C, Unidad de Materiales, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida C.P. 97205, Mexico 
 Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km 33.5 Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida C.P. 97203, Mexico 
 CONACYT-Centro de Investigación Científica de Yucatán, A.C, Unidad de Materiales, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida C.P. 97205, Mexico 
First page
4912
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2739454416
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.