Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

On 3 November 2021, an interplanetary coronal mass ejection impacted the Earth’s magnetosphere leading to a relevant geomagnetic storm (Kp = 8-), the most intense event that occurred so far during the rising phase of solar cycle 25. This work presents the state of the solar wind before and during the geomagnetic storm, as well as the response of the plasmasphere–ionosphere–thermosphere system in the European sector. To investigate the longitudinal differences, the ionosphere–thermosphere response of the American sector was also analyzed. The plasmasphere dynamics was investigated through field line resonances detected at the European quasi-Meridional Magnetometer Array, while the ionosphere was investigated through the combined use of ionospheric parameters (mainly the critical frequency of the F2 layer, foF2) from ionosondes and Total Electron Content (TEC) obtained from Global Navigation Satellite System receivers at four locations in the European sector, and at three locations in the American one. An original method was used to retrieve aeronomic parameters from observed electron concentration in the ionospheric F region. During the analyzed interval, the plasmasphere, originally in a state of saturation, was eroded up to two Earth’s radii, and only partially recovered after the main phase of the storm. The possible formation of a drainage plume is also observed. We observed variations in the ionospheric parameters with negative and positive phase and reported longitudinal and latitudinal dependence of storm features in the European sector. The relative behavior between foF2 and TEC data is also discussed in order to speculate about the possible role of the topside ionosphere and plasmasphere response at the investigated European site. The American sector analysis revealed negative storm signatures in electron concentration at the F2 region. Neutral composition and temperature changes are shown to be the main reason for the observed decrease of electron concentration in the American sector.

Details

Title
Space Weather Effects Observed in the Northern Hemisphere during November 2021 Geomagnetic Storm: The Impacts on Plasmasphere, Ionosphere and Thermosphere Systems
Author
Mauro Regi 1   VIAFID ORCID Logo  ; Perrone, Loredana 2   VIAFID ORCID Logo  ; Alfredo Del Corpo 1   VIAFID ORCID Logo  ; Spogli, Luca 3   VIAFID ORCID Logo  ; Sabbagh, Dario 2   VIAFID ORCID Logo  ; Cesaroni, Claudio 2   VIAFID ORCID Logo  ; Alfonsi, Laura 2   VIAFID ORCID Logo  ; Bagiacchi, Paolo 2   VIAFID ORCID Logo  ; Cafarella, Lili 2   VIAFID ORCID Logo  ; Carnevale, Giuseppina 4   VIAFID ORCID Logo  ; De Lauretis, Marcello 5   VIAFID ORCID Logo  ; Domenico Di Mauro 2   VIAFID ORCID Logo  ; Pierluigi Di Pietro 6   VIAFID ORCID Logo  ; Francia, Patrizia 5   VIAFID ORCID Logo  ; Heilig, Balázs 7   VIAFID ORCID Logo  ; Lepidi, Stefania 1   VIAFID ORCID Logo  ; Marcocci, Carlo 2   VIAFID ORCID Logo  ; Masci, Fabrizio 1   VIAFID ORCID Logo  ; Nardi, Adriano 2   VIAFID ORCID Logo  ; Piscini, Alessandro 2   VIAFID ORCID Logo  ; Redaelli, Gianluca 8   VIAFID ORCID Logo  ; Romano, Vincenzo 2   VIAFID ORCID Logo  ; Sciacca, Umberto 2   VIAFID ORCID Logo  ; Scotto, Carlo 2   VIAFID ORCID Logo 

 Istituto Nazionale di Geofisica e Vulcanologia, Viale Crispi 43, 67100 L’Aquila, Italy 
 Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata, 605, 00143 Rome, Italy 
 Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata, 605, 00143 Rome, Italy; SpacEarth Technology, Via di Vigna Murata 605, 00143 Rome, Italy 
 Istituto Nazionale di Geofisica e Vulcanologia, Viale Crispi 43, 67100 L’Aquila, Italy; Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio snc, Coppito, 67100 L’Aquila, Italy 
 Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio snc, Coppito, 67100 L’Aquila, Italy 
 Istituto Nazionale di Geofisica e Vulcanologia, Via Donato Creti 12, 40100 Bologna, Italy 
 Institute of Earth Physics and Space Science, Csatkai E. u. 6-8, 9400 Sopron, Hungary 
 Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio snc, Coppito, 67100 L’Aquila, Italy; CETEMPS, University of L’Aquila, Via Vetoio snc, 67100 L’Aquila, Italy 
First page
5765
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2739456018
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.