Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Expendable current profiler (XCP) is one of the most vital devices detecting ocean currents. Compared with other methods, the expendable feature makes trials with XCP much faster and more hidden, while the accuracy of XCP is considerably influenced by electromagnetic noise all around. Aiming at researching the influence and reducing the noise, this study carried out laboratory simulation experiments. The designed laboratory experiments mainly have a self-developed rotation gear, an XCP prototype, a plastic flume, and two copper plates as power. Firstly, these experiments analyzed the main sources of electromagnetic noise for XCP detection. Secondly, we built a noise simulation environment and conducted XCP detection experiments under different noise in the flume. The data obtained by XCP were transmitted to the computer to be stored and processed. The results show the internal noise impact on XCP is significantly less than the external. For an excitation power of 1 mV, the offset of theoretical and actual data brought by internal noise is 12 times smaller than external and can be corrected.

Details

Title
Analysis of and Reduction in Noise in Current Measurement of XCP under the Laboratory Condition
Author
Liu, Yunliang 1 ; Chen, Guangyuan 1   VIAFID ORCID Logo  ; Du, Libin 1 ; Zhang, Qisheng 2 ; Zhou, Keyu 2 ; Lin, Zucan 2 ; Du, Sheng 1 

 School of Marine Science and Engineering, Shandong University of Science and Technology, Qingdao 266000, China 
 School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing 100083, China 
First page
8715
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2739456991
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.