Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Strain sensing technology using fibre Bragg grating (FBG) sensors is an attractive capability for aerospace structural health monitoring (SHM) and assessment because they offer resistance to harsh environments, low maintenance, and potential for high density and high strain sensing. The development of FBG inscription techniques through the fibre polymer coating using infrared (IR) lasers has overcome the mechanical weaknesses introduced by removal of the fibre coating, which is typically required for conventional UV laser inscription of FBGs. Type I and Type II femtosecond gratings are fabricated using through-coating inscription techniques, but the higher laser energy used for Type II gratings damages the glass fibre core, impacting mechanical performance. This paper investigates the fatigue performance of Type I and Type II through-coating FBG sensors with different fibre geometries and photosensitisation approaches to evaluate their overall reliability and durability, with a view to assess their performance for potential use in civil and defence SHM applications. The fatigue performance of FBG sensors was assessed under high-strain and high-frequency mechanical loading conditions by using a custom-designed electro-dynamically actuated loading assembly. In addition, pre- and post-fatigue microscopic analyses and high-resolution reflection spectrum characterisation were conducted to investigate the failure regions of the fibres and the effect of fatigue loading on reflection spectrum features. As expected, Type I gratings had a significantly higher fatigue life compared to Type II gratings. However, Type II gratings performed significantly better than conventional UV laser-inscribed FBGs and electrical foil strain gauges. Type II gratings withstand higher temperatures, and are therefore more suitable for application in harsh environments.

Details

Title
Fatigue Performance of Type I and Type II Fibre Bragg Gratings Fabricated by Femtosecond Laser Inscription through the Coating
Author
Zhang, Naizhong 1 ; Turk, Suzana 2   VIAFID ORCID Logo  ; Davis, Claire 2 ; Chiu, Wing K 1   VIAFID ORCID Logo  ; Boilard, Tommy 3   VIAFID ORCID Logo  ; Bernier, Martin 3 

 Department of Mechanical and Aerospace Engineering, Monash University, Wellington Rd, Melbourne, VIC 3800, Australia 
 Defence Science and Technology Group, 506 Lorimer Street, Fishermans Bend, Melbourne, VIC 3207, Australia 
 Centre d’Optique, Photonique et Laser (COPL), Université Laval, Québec, QC G1V 0A6, Canada 
First page
8812
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2739457658
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.