Abstract

Pairing (or blocking) is a design technique that is widely used in comparative microbiome studies to efficiently control for the effects of potential confounders (e.g., genetic, environmental, or behavioral factors). Some typical paired (block) designs for human microbiome studies are repeated measures designs that profile each subject’s microbiome twice (or more than twice) (1) for pre and post treatments to see the effects of a treatment on microbiome, or (2) for different organs of the body (e.g., gut, mouth, skin) to see the disparity in microbiome between (or across) body sites. Researchers have developed a sheer number of web-based tools for user-friendly microbiome data processing and analytics, though there is no web-based tool currently available for such paired microbiome studies. In this paper, we thus introduce an integrative web-based tool, named MiPair, for design-based comparative analysis with paired microbiome data. MiPair is a user-friendly web cloud service that is built with step-by-step data processing and analytic procedures for comparative analysis between (or across) groups or between baseline and other groups. MiPair employs parametric and non-parametric tests for complete or incomplete block designs to perform comparative analyses with respect to microbial ecology (alpha- and beta-diversity) and taxonomy (e.g., phylum, class, order, family, genus, species). We demonstrate its usage through an example clinical trial on the effects of antibiotics on gut microbiome. MiPair is an open-source software that can be run on our web server (http://mipair.micloud.kr) or on user’s computer (https://github.com/yj7599/mipairgit).

Details

Title
Integrative web cloud computing and analytics using MiPair for design-based comparative analysis with paired microbiome data
Author
Jang, Hyojung 1 ; Koh, Hyunwook 1 ; Gu, Won 1 ; Kang, Byungkon 2 

 The State University of New York, Korea, Department of Applied Mathematics and Statistics, Incheon, South Korea (GRID:grid.410685.e) (ISNI:0000 0004 7650 0888) 
 The State University of New York, Korea, Department of Computer Science, Incheon, South Korea (GRID:grid.410685.e) (ISNI:0000 0004 7650 0888) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2740758470
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.