Full Text

Turn on search term navigation

© 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background:The detection of early changes in vital signs (VSs) enables timely intervention; however, the measurement of VSs requires hands-on technical expertise and is often time-consuming. The contactless measurement of VSs is beneficial to prevent infection, such as during the COVID-19 pandemic. Lifelight is a novel software being developed to measure VSs by remote photoplethysmography based on video captures of the face via the integral camera on mobile phones and tablets. We report two early studies in the development of Lifelight.

Objective:The objective of the Vital Sign Comparison Between Lifelight and Standard of Care: Development (VISION-D) study (NCT04763746) was to measure respiratory rate (RR), pulse rate (PR), and blood pressure (BP) simultaneously by using the current standard of care manual methods and the Lifelight software to iteratively refine the software algorithms. The objective of the Vital Sign Comparison Between Lifelight and Standard of Care: Validation (VISION-V) study (NCT03998098) was to validate the use of Lifelight software to accurately measure VSs.

Methods:BP, PR, and RR were measured simultaneously using Lifelight, a sphygmomanometer (BP and PR), and the manual counting of RR. Accuracy performance targets for each VS were defined from a systematic literature review of the performance of state-of-the-art VSs technologies.

Results:The VISION-D data set (17,233 measurements from 8585 participants) met the accuracy targets for RR (mean error 0.3, SD 3.6 vs target mean error 2.3, SD 5.0; n=7462), PR (mean error 0.3, SD 4.0 vs mean error 2.2, SD 9.2; n=10,214), and diastolic BP (mean error −0.4, SD 8.5 vs mean error 5.5, SD 8.9; n=8951); for systolic BP, the mean error target was met but not the SD (mean error 3.5, SD 16.8 vs mean error 6.7, SD 15.3; n=9233). Fitzpatrick skin type did not affect accuracy. The VISION-V data set (679 measurements from 127 participants) met all the standards: mean error −0.1, SD 3.4 for RR; mean error 1.4, SD 3.8 for PR; mean error 2.8, SD 14.5 for systolic BP; and mean error −0.3, SD 7.0 for diastolic BP.

Conclusions:At this early stage in development, Lifelight demonstrates sufficient accuracy in the measurement of VSs to support certification for a Level 1 Conformité Européenne mark. As the use of Lifelight does not require specific training or equipment, the software is potentially useful for the contactless measurement of VSs by nonclinical staff in residential and home care settings. Work is continuing to enhance data collection and processing to achieve the robustness and accuracy required for routine clinical use.

International Registered Report Identifier (IRRID):RR2-10.2196/14326

Details

Title
Measurement of Vital Signs Using Lifelight Remote Photoplethysmography: Results of the VISION-D and VISION-V Observational Studies
Author
Heiden, Emily  VIAFID ORCID Logo  ; Jones, Tom  VIAFID ORCID Logo  ; Annika Brogaard Maczka  VIAFID ORCID Logo  ; Kapoor, Melissa  VIAFID ORCID Logo  ; Chauhan, Milan  VIAFID ORCID Logo  ; Wiffen, Laura  VIAFID ORCID Logo  ; Barham, Helen  VIAFID ORCID Logo  ; Holland, Jeremy  VIAFID ORCID Logo  ; Saxena, Manish  VIAFID ORCID Logo  ; Wegerif, Simon  VIAFID ORCID Logo  ; Brown, Thomas  VIAFID ORCID Logo  ; Lomax, Mitch  VIAFID ORCID Logo  ; Massey, Heather  VIAFID ORCID Logo  ; Rostami, Shahin  VIAFID ORCID Logo  ; Pearce, Laurence  VIAFID ORCID Logo  ; Chauhan, Anoop  VIAFID ORCID Logo 
First page
e36340
Section
Formative Evaluation of Digital Health Interventions
Publication year
2022
Publication date
Nov 2022
Publisher
JMIR Publications
e-ISSN
2561326X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2742862408
Copyright
© 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.