It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
As an important m6A reader, the YT521-B homology domain family 2 (YTHDF2) has been shown to regulate mRNA degradation and translation, and to be involved in inflammation. However, little is known about the role of YTHDF2 in the autoimmune-based inflammatory disease rheumatoid arthritis (RA). To begin to ascertain any role for this reader, 74 RA patients and 63 healthy controls (HC) were recruited for this study. Blood was collected from each subject and peripheral blood mononuclear cells (PBMC) isolated. Thereafter, mRNA expression of YTHDF2, interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α in the cells was determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The harvested blood was also assessed for a variety of parameters, including levels of C-reactive protein (CRP), erythrocyte sedimentation rates (ESR), white blood cell counts (WBC), neutrophils counts (N)/neutrophils percentages (N%), and neutrophil:lymphocyte ratios (NLR) - each markers of inflammation during RA. The results showed that YTHDF2 mRNA expression in RA patient PBMC was decreased significantly vs that in healthy control subject cells. Further, YTHDF2 mRNA expression in RA patient PBMC negatively-correlated with ESR, CRP levels, WBC counts, as well as neutrophils counts, percentages, and NLR values. In addition, it was seen that YTHDF2 mRNA expression in RA patient PBMC was associated with host serum RF levels and treatment. Moreover, it was found that mRNA expression of IL-1β, IL-6, IL-8, and TNFα was increased in PBMC from RA patients relative to in control subject cells; however, only the increased IL-1β expression was seen to be negatively-correlated with decreased YTHDF2 mRNA expression. In conclusion, the present study illustrated that YTHDF2 expression might have some regulatory role in the underlying mechanisms associated with the autoimmune disease RA and that this m6A reader could at some point represent a potential target for regulating inflammatory responses that occur during RA.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Clinical Laboratory, First Affiliated Hospital of Nanchang University, Nanchang, China; Department of Medical College, Nanchang University, Nanchang, China
2 Department of Clinical Laboratory, First Affiliated Hospital of Nanchang University, Nanchang, China
3 Department of Medical College, Nanchang University, Nanchang, China
4 Department of Rheumatology, First Affiliated Hospital of Nanchang University, Nanchang, China
5 Department of Medical College, Nanchang University, Nanchang, China; Department of Clinical Laboratory, Second Affiliated Hospital of Nanchang University, Nanchang, China