Full text

Turn on search term navigation

© 2022 Parola et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The study objective was to determine if intraarticular injections of an extracellular matrix (ECM) powder and blood composite (ECM-B) would have a significant impact on post-operative gait parameters without eliciting adverse cartilage changes or severe lymphatic reactions in an idiopathic osteoarthritis (OA) model. Twenty-one Dunkin Hartley Guinea pigs received an intraarticular injection of ECM-B in each knee and were split into sub-groups for gait assessment and post-harvest knee evaluations at 1 week (n = 5), 2 weeks (n = 5), 4 weeks (n = 5), or 8 weeks (n = 6). The results were compared with a control group (n = 5), which underwent bilateral injections of phosphate-buffered saline (PBS), gait measurements at 1, 2, 4, and 8 weeks, and post-mortem knee evaluation at 8 weeks post-injection. Hind limbs and popliteal lymph nodes were collected at the Week 8 endpoint and underwent histological analysis by a veterinary pathologist. Significant improvement in hind limb base of support was observed in the ECM-B group compared to the control group at Week 4 but was no longer significant by Week 8. No significant differences were observed between control and ECM-B groups in hind limb cartilage, synovium, or popliteal lymph node histology at Week 8. In conclusion, administration of an ECM-B material may improve gait for a limited time without significant adverse effects on the cartilage, synovium, or local lymph nodes.

Details

Title
Hydrogel treatment for idiopathic osteoarthritis in a Dunkin Hartley Guinea pig model
First page
e0278338
Section
Research Article
Publication year
2022
Publication date
Nov 2022
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2743380766
Copyright
© 2022 Parola et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.