Full text

Turn on search term navigation

© 2022. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Purpose: This study aimed to investigate the prevalence of the CRISPR-Cas system in nosocomial isolates of Enterococcus and their possible association with antibiotic resistance and virulence genes.

Materials and Methods: Identification and antimicrobial susceptibility of the microorganism were performed by the automatized VITEK 2 Compact system (bioMerieux, France). A total of 100 Enterococcus isolates were collected and identified by VITEK 2 Compact automatic microbial identification drug susceptibility analyzer. The prevalence of various CRISPR-Cas systems, antibiotic resistance genes and virulence genes were investigated by polymerase chain reaction (PCR). The prevalence of CRISPR-Cas systems associated with antibiotic resistance and virulence genes was performed by appropriate statistical tests.

Results: A total of 100 isolates of Enterococcus were identified and there were 62/100(62.0%) Enterococcus faecalis isolates and 38/100(38.0%) Enterococcus faecalis isolates. In total, 46 (46.0%) of 100 isolates had at least one CRISPR-Cas locus. CRISPR elements were more prevalent in Enterococcus faecalis isolates. The results of PCR demonstrated that CRISPR1-Cas, orphan CRISPR2, and CRISPR3-Cas were present in 23 (23.0%), 42 (42.0%) and 5 (5.0%) Enterococcus isolates, respectively. Compared with CRISPR-Casnegative isolates, the CRISPR-Cas positive isolates showed significant lower resistance rates against ampicillin, erythromycin, levofloxacin, tetracycline, vancomycin, gentamicin, streptomycin, and rifampicin. Presumably consistent with drug susceptibility, fewer CRISPR loci were identified in vanA, tetM, ermB, aac6’-aph(2”), aadE, and ant(6) positive isolates. There was a significant negative correlation between the CRISPR-Cas locus and the enterococcal virulence factors enterococcal surface protein (esp) gene.

Conclusion: In conclusion, the results indicated that the absence of the CRISPR-Cas system was negatively associated with some antibiotic resistance in clinical isolates of Enterococcus faecalis and Enterococcus faecium. Also, there was a negative correlation with the carriage of antibiotic resistance genes. Furthermore, CRISPR-Cas may prevent some isolates from acquiring certain virulence factors.

Details

Title
Association of CRISPR-Cas System with the Antibiotic Resistance and Virulence Genes in Nosocomial Isolates of Enterococcus
Author
Tao, S  VIAFID ORCID Logo  ; Chen, H; Li N; Fang, Y; Xu Y; Liang, W
Pages
6939-6949
Section
Original Research
Publication year
2022
Publication date
2022
Publisher
Taylor & Francis Ltd.
e-ISSN
1178-6973
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2743750386
Copyright
© 2022. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.