It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Two centuries of studies have demonstrated the importance of understanding the interaction between air temperature and carbon dioxide (CO2) emissions, which can impact the climate system and human life in various ways, and across different timescales. While historical interactions have been consistently studied, the nature of future interactions and the impacts of confounding factors still require more investigation in keeping with the continuous updates of climate projections to the end of the 21st century. Phase 6 of the Coupled Model Intercomparison Project (CMIP6), like its earlier projects, provides ScenarioMIP multi-model projections to assess the climate under different radiative forcings ranging from a low-end (SSP1–2.6) to a high-end (SSP5–8.5) pathway. In this study, we analyze the localized causal structure of CO2, and near-surface mean air temperature (meanT) interaction for four scenarios from three CMIP6 models using a rigorous multivariate information flow (IF) causality, which can separate the cause from the effect within the interaction (CO2–meanT and meanT–CO2) by measuring the rate of IF between parameters. First, we obtain patterns of the CO2 and meanT causal structures over space and time. We found a contrasting emission-based impact of soil moisture (SM) and vegetation (leaf area index (LAI)) changes on the meanT–CO2 causal patterns. That is, SM influenced CO2 sink regions in SSP1–2.6 and source regions in SSP5–8.5, and vice versa found for LAI influences. On the other hand, they function similarly to constrain the future CO2 impact on meanT. These findings are essential for improving long-term predictability where climate models might be limited.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology , Nanjing 210044, People’s Republic of China
2 NIOZ Royal Netherlands Institute for Sea Research , Den Burg 1790 AB, Texel, The Netherlands; Department of Earth Sciences, Vrije Universiteit Amsterdam , Amsterdam 1081 HV, The Netherlands
3 School of Atmospheric Science and Remote Sensing, Wuxi University , Wuxi 214105, People’s Republic of China
4 Ministry of Education Key Laboratory for Earth System Modeling and the Department of Earth System Science, Tsinghua University , Beijing 100084, People’s Republic of China