Abstract

Ferropericlase (Mg,Fe)O is the second most abundant mineral in Earth’s lower mantle and a common inclusion found in subcratonic diamonds. Pyrolitic mantle has Mg# (100 × Mg/(Mg+Fe)) ~89. However, ferropericlase inclusions in diamonds show a broad range of Mg# between 12 and 93. Here we use Synchrotron Mössbauer Source (SMS) spectroscopy and single-crystal X-ray diffraction to determine the iron oxidation state and structure of two magnesiowüstite and three ferropericlase inclusions in diamonds from São Luiz, Brazil. Inclusion Mg#s vary between 16.1 and 84.5. Ferropericlase inclusions contain no ferric iron within the detection limit of SMS, while both magnesiowüstite inclusions show the presence of monocrystalline magnesioferrite ((Mg,Fe)Fe3+2O4) with an estimated 47–53 wt% Fe2O3. We argue that the wide range of Fe concentrations observed in (Mg,Fe)O inclusions in diamonds and the appearance of magnesioferrite result from oxidation of ferropericlase triggered by the introduction of subducted material into sublithospheric mantle.

This article reports finding of a highly oxidised mineral in diamond inclusion derived from mantle transition zone or lower mantle, very reduced areas on our planet. Such oxidised material is likely linked to subduction of carbonates into this region.

Details

Title
Subduction-related oxidation of the sublithospheric mantle evidenced by ferropericlase and magnesiowüstite diamond inclusions
Author
Kiseeva, Ekaterina S. 1   VIAFID ORCID Logo  ; Korolev, Nester 2   VIAFID ORCID Logo  ; Koemets, Iuliia 3 ; Zedgenizov, Dmitry A. 4 ; Unitt, Richard 1 ; McCammon, Catherine 3   VIAFID ORCID Logo  ; Aslandukova, Alena 3 ; Khandarkhaeva, Saiana 3 ; Fedotenko, Timofey 5 ; Glazyrin, Konstantin 6   VIAFID ORCID Logo  ; Bessas, Dimitrios 7   VIAFID ORCID Logo  ; Aprilis, Georgios 7   VIAFID ORCID Logo  ; Chumakov, Alexandr I. 7   VIAFID ORCID Logo  ; Kagi, Hiroyuki 8 ; Dubrovinsky, Leonid 3   VIAFID ORCID Logo 

 University College Cork, School of Biological, Earth and Environmental Sciences, Cork, Ireland (GRID:grid.7872.a) (ISNI:0000000123318773) 
 Institute of Precambrian Geology and Geochronology of the Russian Academy of Sciences, St. Petersburg, Russia (GRID:grid.465386.a) (ISNI:0000 0004 0562 7224) 
 Universität Bayreuth, Bayerisches Geoinstitut, Bayreuth, Germany (GRID:grid.7384.8) (ISNI:0000 0004 0467 6972) 
 A.N. Zavaritsky Institute of Geology and Geochemistry, Ekaterinburg, Russia (GRID:grid.473268.c) (ISNI:0000 0001 0221 8044); Ural State Mining University, Ekaterinburg, Russia (GRID:grid.446243.3) (ISNI:0000 0004 0646 288X) 
 Universität Bayreuth, Materials Physics and Technology at Extreme Conditions, Laboratory of Crystallography, Bayreuth, Germany (GRID:grid.7384.8) (ISNI:0000 0004 0467 6972); Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany (GRID:grid.7683.a) (ISNI:0000 0004 0492 0453) 
 Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany (GRID:grid.7683.a) (ISNI:0000 0004 0492 0453) 
 ESRF-The European Synchrotron, CS 40220, Grenoble, France (GRID:grid.5398.7) (ISNI:0000 0004 0641 6373) 
 The University of Tokyo, Geochemical Research Center, Graduate School of Science, Tokyo, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2151 536X) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2747130735
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.