It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Due to its high mortality rate and continued re-emergence, Ebolavirus disease (EVD) continues to pose a serious threat to global health. A group of viruses within the genus Ebolavirus causes this severe hemorrhagic disease in humans: Ebola virus (EBOV; species Zaire ebolavirus), Sudan virus (SUDV; species Sudan ebolavirus), Bundibugyo virus, and Taï Forest virus. EBOV and SUDV are associated with the highest case fatality rates. While the host response to EBOV has been comprehensively examined, limited data exists for SUDV infection. For medical countermeasure testing, well-characterized SUDV nonhuman primate (NHP) models are thus needed. Here, we describe a natural history study in which rhesus (N = 11) and cynomolgus macaques (N = 14) were intramuscularly exposed to a 1000 plaque-forming unit dose of SUDV (Gulu variant). Time-course analyses of various hematological, pathological, serological, coagulation, and transcriptomic findings are reported. SUDV infection was uniformly lethal in cynomolgus macaques (100% mortality), whereas a single rhesus macaque subject (91% mortality) survived to the study endpoint (median time-to-death of ∼8.0 and ∼8.5 days in cynomolgus and rhesus macaques, respectively). Infected macaques exhibited hallmark features of human EVD. The early stage was typified by viremia, granulocytosis, lymphopenia, albuminemia, thrombocytopenia, and decreased expression of HLA-class transcripts. At mid-to-late disease, animals developed fever and petechial rashes, and expressed high levels of pro-inflammatory mediators, pro-thrombotic factors, and markers indicative of liver and kidney injury. End-stage disease was characterized by shock and multi-organ failure. In summary, macaques recapitulate human SUDV disease, supporting these models for use in the development of vaccines and therapeutics.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details







1 Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA