Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Electric vehicles (EVs) in severe cold regions face the real demand for fast charging under low temperatures, but low-temperature environments with high C-rate fast charging can lead to severe lithium plating of the anode material, resulting in rapid degradation of the lithium-ion battery (LIB). In this paper, by constructing an electrode–thermal model coupling solid electrolyte interphase (SEI) growth and lithium plating, the competition among different factors of capacity degradation under various ambient temperatures and C-rates are systematically analyzed. In addition, the most important cause of rapid degradation of LIBs under low temperatures are investigated, which reveal the change pattern of lithium plating with temperature and C-rate. The threshold value and kinetic law of lithium plating are determined, and a method of lithium-free control under high C-rate is proposed. Finally, by studying the average aging rate of LIBs, the reasons for the abnormal attenuation of cycle life at lower C-rates are ascertained. Through the chromaticity diagram of the expected life of LIBs under various conditions, the optimal fast strategy is explored, and its practical application in EVs is also discussed. This study can provide a useful reference for the development of high-performance and high-safety battery management systems to achieve fine management.

Details

Title
The Dilemma of C-Rate and Cycle Life for Lithium-Ion Batteries under Low Temperature Fast Charging
Author
Gao, Zhenhai 1 ; Xie, Haicheng 2 ; Yang, Xianbin 2   VIAFID ORCID Logo  ; Niu, Wanfa 2 ; Shen, Li 3 ; Chen, Siyan 1   VIAFID ORCID Logo 

 State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China; College of Automotive Engineering, Jilin University, Changchun 130022, China 
 College of Automotive Engineering, Jilin University, Changchun 130022, China 
 Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK 
First page
234
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23130105
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748252546
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.