Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Semiconductor-based heterogeneous photocatalytic oxidation processes have received considerable attention for the remediation of toxic pollutants. Herein, InVO4/NiFe2O4 nanocomposites were synthesized using a facile hydrothermal technique. Furthermore, various characterization results revealed the successful loading of NiFe2O4 nanoplates over InVO4 nanosheets, thereby signifying the formation of a heterostructure. The performance of the synthesized photocatalyst was tested for tetracycline (TC) antibiotic removal. The optimized InVO4/NiFe2O4 nanocomposite exhibits maximum photodegradation of TC molecules (96.68%) in 96 min; this is approximately 6.47 and 4.93 times higher than that observed when using NiFe2O4 and InVO4, respectively. The strong interaction between the InVO4 nanosheets and NiFe2O4 nanoplates can improve the visible-light absorption and hinder the recombination of charge carriers, further enhancing the photocatalytic performance. Moreover, hydroxyl radicals play a crucial role in the photodegradation of TC antibiotics.

Details

Title
Novel Indium Vanadium Oxide Nanosheet-Supported Nickel Iron Oxide Nanoplate Heterostructure for Synergistically Enhanced Photocatalytic Degradation of Tetracycline
Author
Sreeram, N 1 ; Aruna, V 2 ; Koutavarapu, Ravindranadh 3   VIAFID ORCID Logo  ; Dong-Yeon, Lee 3 ; Shim, Jaesool 4 

 Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 510, Andhra Pradesh, India 
 Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 510, Andhra Pradesh, India; Department of Physics, Bapatla Engineering College, Bapatla 522 102, Andhra Pradesh, India 
 Department of Robotics Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea 
 School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea 
First page
1471
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748270749
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.