Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Bladder cancer is a common and often fatal disease. Papillary bladder tumors are well detectable using cystoscopic imaging, but small or flat lesions are frequently overlooked by urologists. However, detection accuracy can be improved if the images from the cystoscope are segmented in real time by a deep neural network (DNN). In this paper, we compare eight state-of-the-art DNNs for the semantic segmentation of white-light cystoscopy images: U-Net, UNet++, MA-Net, LinkNet, FPN, PAN, DeepLabv3, and DeepLabv3+. The evaluation includes per-image classification accuracy, per-pixel localization accuracy, prediction speed, and model size. Results show that the best F-score for bladder cancer (91%), the best segmentation map precision (92.91%), and the lowest size (7.93 MB) are also achieved by the PAN model, while the highest speed (6.73 ms) is obtained by DeepLabv3+. These results indicate better tumor localization accuracy than reported in previous studies. It can be concluded that deep neural networks may be extremely useful in the real-time diagnosis and therapy of bladder cancer, and among the eight investigated models, PAN shows the most promising results.

Details

Title
A Comparative Study of Deep Neural Networks for Real-Time Semantic Segmentation during the Transurethral Resection of Bladder Tumors
Author
Varnyú, Dóra  VIAFID ORCID Logo  ; Szirmay-Kalos, László  VIAFID ORCID Logo 
First page
2849
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20754418
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748279470
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.