Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background and Objectives: Developing a prosthetic heart valve that combines the advantageous hemodynamic properties of its biological counterpart with the longevity of mechanical prostheses has been a major challenge for heart valve development. Anatomically inspired artificial polymeric heart valves have the potential to combine these beneficial properties, and innovations in 3D printing have given us the opportunity to rapidly test silicone prototypes of new designs to further the understanding of biophysical properties of artificial heart valves. TRISKELION is a promising prototype that we have developed, tested, and further improved in our institution. Materials and Methods: STL files of our prototypes were designed with FreeCad 0.19.2 and 3D printed with an Agilista 3200W (Keyence, Osaka, Japan) using silicones of Shore hardness 35 or 65. Depending on the valve type, the support structures were printed in AR-M2 plastics. The prototypes were then tested using a hemodynamic pulse duplicator (HKP 2.0) simulating an aortic valve cycle at 70 bpm with 70 mL stroke volume (cardiac output 4.9 L/min). Valve opening cycles were visualized with a high-speed camera (Phantom Miro C320). The resulting values led to further improvements of the prototype (TRISKELION) and were compared to a standard bioprosthesis (Edwards Perimount 23 mm) and a mechanical valve (Bileaflet valve, St. Jude Medical). Results: We improved the silicone prototype with currently used biological and mechanical valves measured in our setup as benchmarks. The regurgitation fractions were 22.26% ± 4.34% (TRISKELION) compared to 8.55% ± 0.22% (biological) and 13.23% ± 0.79% (mechanical). The mean systolic pressure gradient was 9.93 ± 3.22 mmHg (TRISKELION), 8.18 ± 0.65 mmHg (biological), and 10.15 ± 0.16 mmHg (mechanical). The cardiac output per minute was at 3.80 ± 0.21 L/min (TRISKELION), 4.46 ± 0.01 L/min (biological), and 4.21 ± 0.05 L/min (mechanical). Conclusions: The development of a heart valve with a central structure proves to be a promising concept. It offers another principle to address the problem of longevity in currently used heart valves. Using 3D printing to develop new prototypes provides a fast, effective, and accurate way to deepen understanding of its physical properties and requirements. This opens the door for translating and combining results into modern prototypes using highly biocompatible polymers, internal structures, and advanced valve layouts.

Details

Title
Engineering a New Polymeric Heart Valve Using 3D Printing—TRISKELION
Author
Tschorn, Philip 1 ; Schröter, Filip 2   VIAFID ORCID Logo  ; Hartrumpf, Martin 1   VIAFID ORCID Logo  ; Kühnel, Ralf-Uwe 1 ; Ostovar, Roya 1 ; Albes, Johannes M 2 

 Department of Cardiovascular Surgery, Heart Center Brandenburg, Brandenburg Medical School Theodor Fontane, 16321 Bernau bei Berlin, Germany 
 Department of Cardiovascular Surgery, Heart Center Brandenburg, Brandenburg Medical School Theodor Fontane, 16321 Bernau bei Berlin, Germany; Faculty of Health Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany 
First page
1695
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
1010660X
e-ISSN
16489144
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748298472
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.