Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Patients at risk of chronic kidney disease (CKD) must be identified early and precisely in order to prevent complications, save lives, and limit expenditures for patients and health systems. This study aimed to develop a simple, high-precision machine learning model to identify individuals at risk of developing CKD in the near future, using a novel metabolic index with or without creatinine. This retrospective cohort study used data from the MJ medical record database collected between 2001 and 2015 in Taiwan. We used Cox hazard regression to identify potential predictors, including the novel metabolic index, for use as variables in the models. To develop a machine learning-based CKD risk model with fewer variables, we performed several experimental analyses to combine interacting variables into subsets. Those subsets were used to train three models, random forest, logistic regression, and XGBoost, with or without adding creatinine. The study included 12,189 participants, 20% with and 80% without CKD. The most important conventional predictors of CKD are age and gender. The novel metabolic index, TyG-Index, TG/HDL-ratio and VAI, had stronger predictive power than the conventional risk factors. Without including creatinine data, the XGBoost provided the best predictive performance. After adding creatinine, the performance of all the models was excellent, outperforming both conventional indicators and existing clinical algorithms for CKD. Using novel metabolic index in machine learning-based CKD risk prediction can accurately identify individuals at risk of diagnosis with CKD in the next year, with or without including creatinine.

Details

Title
Machine Learning Approach for Chronic Kidney Disease Risk Prediction Combining Conventional Risk Factors and Novel Metabolic Indices
Author
Jallow, Amadou Wurry 1   VIAFID ORCID Logo  ; Bah, Adama N S 2 ; Bah, Karamo 2   VIAFID ORCID Logo  ; Chien-Yeh, Hsu 3 ; Kuo-Chung, Chu 4   VIAFID ORCID Logo 

 Department of Health Technology, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan; Department of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 11031, Taiwan 
 Graduate Institute of Medical Informatic, Taipei Medical University, Taipei 11031, Taiwan 
 Department of Information Management, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan; College of Public Health, Taipei Medical University, Taipei 11031, Taiwan 
 Department of Information Management, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan 
First page
12001
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748520428
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.