Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The main source of urban waste is the daily life activities of residents, and the waste sorting of residents’ waste is important for promoting economic recycling, reducing labor costs, and protecting the environment. However, most residents are unable to make accurate judgments about the categories of household waste, which severely limits the efficiency of waste sorting. We have designed an intelligent waste bin that enables automatic waste sorting and recycling, avoiding the extensive knowledge required for waste sorting. To ensure that the waste-classification model is high accuracy and works in real time, GECM-EfficientNet is proposed based on EfficientNet by streamlining the mobile inverted bottleneck convolution (MBConv) module, introducing the efficient channel attention (ECA) module and coordinate attention (CA) module, and transfer learning. The accuracy of GECM-EfficientNet reaches 94.54% and 94.23% on the self-built household waste dataset and TrashNet dataset, with parameters of only 1.23 M. The time of one recognition on the intelligent waste bin is only 146 ms, which satisfies the real-time classification requirement. Our method improves the computational efficiency of the waste-classification model and simplifies the hardware requirements, which contributes to the residents’ waste classification based on intelligent devices.

Details

Title
An Intelligent Waste-Sorting and Recycling Device Based on Improved EfficientNet
Author
Feng, Zhicheng 1 ; Yang, Jie 2 ; Chen, Lifang 3 ; Chen, Zhichao 1 ; Li, Linhong 1 

 Department of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, China; Jiangxi Provincial Key Laboratory of Maglev Technology, Ganzhou 341000, China 
 Department of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China 
 Department of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China 
First page
15987
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
1661-7827
e-ISSN
1660-4601
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748546806
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.